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The present article is the fourth in a series of 6 documents
focused on providing current guidelines for the standard-

ization and interpretation of the electrocardiogram (ECG). The
project was initiated by the Council on Clinical Cardiology of
the American Heart Association. The rationale for this project
and the process for its implementation were described earlier.1

Abnormalities in the ST segment, T wave, and duration of
the QT interval reflect abnormalities in ventricular repolar-
ization. These abnormalities are common and often difficult
to interpret. The U wave most likely represents an electric-
mechanical phenomenon that occurs after repolarization is
completed. However, it is frequently included in discussions
of repolarization and is discussed in this section.

The ST segment corresponds to the plateau phase of the
ventricular transmembrane action potential. Under normal con-

ditions, the transmembrane voltage changes slowly during this
phase and remains at approximately the same level in all
ventricular myocardial cells. As a result, only small voltage
gradients are present. This absence of pronounced voltage
gradients is similar to that which occurs during electric diastole,
ie, from the end of repolarization to the onset of the next
depolarization, when ventricular myocardial cells are at their
resting transmembrane potential of approximately �85 mV.
This corresponds to the TP segment on the ECG. The absence of
significant voltage gradients in ventricular myocardial cells
during these 2 phases of the cardiac cycle explains why the ST
and TP segments are normally nearly flat and at approximately
the same level; that is, they are isoelectric.

The T wave corresponds to the phase of rapid ventricular
repolarization (phase 3) of the ventricular action potential.
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During this phase, the transmembrane action potential repo-
larizes from its plateau voltage of approximately 10 to �10
mV to its resting level of approximately �85 mV. The
interventricular and intraventricular voltage gradients created
as the cells undergo rapid sequential repolarization generate
the T wave on the body surface ECG. The configuration of
the T wave is determined by the spatial-temporal character-
istics of ventricular repolarization, particularly the asyn-
chrony of phase 3 of the ventricular action potentials. Our
knowledge of these characteristics is still incomplete. In
general, repolarization proceeds from epicardium to endocar-
dium, that is, opposite to the direction of ventricular depo-
larization,2,3 and probably, like during excitation, a signifi-
cant fraction of simultaneous repolarization wave fronts are
mutually canceled. The difference in the spatial sequence of
depolarization and repolarization in the left ventricular free
wall reflects the observation that there tends to be an inverse
relationship between activation time and action potential
duration.4 The action potential duration of epicardial cells is
shorter than that of the endocardial and midmyocardial cells.5

In addition, it is known that inhomogeneities of repolarization
occur over relatively short distances on the surface of the
ventricles and most probably also within the ventricular
wall.5,6 It is probable that some of these inherent action
potential differences are the result of electrotonic interactions
during repolarization.7

Abnormalities in the ST segment and T wave are caused by
abnormal voltage gradients during the plateau and rapid
repolarization phases of the action potential and by changes
in the sequence of repolarization that may occur both with
and without abnormal voltage gradients. These abnormalities
are often associated with a variety of well-defined anatomic,
pathological, physiological, and pharmacological events.

In this section, we address several issues relative to the
measurement, description, and interpretation of ST segment,
T and U waves, and QT interval. They include the distinction
between primary and secondary repolarization abnormalities,
appropriate descriptive and interpretive terminology, and
measurement of the QT interval and its adjustment for rate,
gender, and QRS duration.

Distinction Between Primary and Secondary
Repolarization Abnormalities

Abnormalities in the ST segment and T wave, which are the
result of changes in the shape and/or duration of the repolar-
ization phases of the transmembrane action potential and
occur in the absence of changes in depolarization, are referred
to as primary repolarization abnormalities. They may be
localized or diffuse and may be caused by a variety of events,
including ischemia, myocarditis, drugs, toxins, and electro-
lyte abnormalities, particularly abnormalities of serum cal-
cium and potassium. An abrupt change in heart rate, hyper-
ventilation, changes in body position, catecholamines,
sympathetic stimulation or ablation of the stellate ganglion,
and temperature changes also can cause primary repolariza-
tion abnormalities.8,9

Abnormalities in the ST segment and T wave that occur as
the direct result of changes in the sequence and/or duration of
ventricular depolarization, manifested electrocardiographi-

cally as changes in QRS shape and/or duration, are referred to
as secondary repolarization abnormalities. These changes do
not require changes in the shape or duration of phase 2 and
phase 3 of ventricular action potential of individual cells.
Rather, they may be due to voltage gradients that are
normally largely canceled but become manifest when the
changes in the sequence of depolarization alter the repolar-
ization sequence. The ST- and T-wave changes that occur in
association with bundle-branch blocks, ventricular preexcita-
tion, and ectopic and paced ventricular complexes are exam-
ples of secondary repolarization abnormalities.

The classic ventricular gradient concept introduced by
Wilson et al10 in 1931 is of some theoretical interest concern-
ing primary versus secondary repolarization abnormalities.
Ventricular gradient in a single ECG lead is the net time
integral of the ECG voltage from the beginning of the P wave
to the end of the U wave. Its spatial counterpart is the
ventricular gradient vector determined from the orthogonal
XYZ leads. The practical utility of the ventricular gradient in
differentiating primary from secondary repolarization abnor-
malities has not been demonstrated.11 When the direction of
the QRS axis is normal, an abnormal direction of the T-wave
axis is generally an indication of primary repolarization
abnormalities.

Recognition of secondary repolarization abnormalities is
usually not difficult. In left bundle-branch block, the ST-
segment and T-wave vectors are generally directed opposite
to the mean QRS vector. In right bundle-branch block, they
are directed opposite to the slow terminal component of the
QRS complex. In ventricular preexcitation, ST-T changes are
directed opposite to the delta wave of the QRS complex. The
magnitude of the ST-T change is dependent on the magnitude
of the QRS-waveform changes when the excitation pathways
change.

The secondary ST- and T-wave changes associated with
transiently altered ventricular conduction such as those that
occur with ectopic ventricular complexes or transient bundle-
branch blocks usually revert promptly to the pattern that
existed before the ventricular conduction changes developed.
However, some secondary repolarization changes take longer
(hours or days) to develop and to dissipate. The repolarization
changes associated with prolonged ventricular pacing are
examples of this phenomenon.12

Primary and secondary repolarization abnormalities may
occur concurrently. For example, ventricular hypertrophy is
associated with changes in the shape and duration of the
ventricular action potential of isolated ventricular cells, par-
ticularly on the endocardial surface.13 These changes may
contribute to ST- and T-wave changes and are independent of
the changes that are secondary to QRS-amplitude changes
and prolongation of the QRS complex. A combination of
primary and secondary repolarization abnormalities should
also be considered when T-wave polarity does not change as
anticipated by the changes in the QRS complex.

Recommendation
The distinction between primary and secondary repolariza-
tion abnormalities is clinically relevant because primary
abnormalities indicate changes in the repolarization charac-
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teristics of ventricular myocytes whereas secondary changes
do not. The designation of the ST- and T-wave abnormalities
as primary or secondary is appropriate, and it is recom-
mended that automated interpretative algorithms be pro-
grammed to identify them.

ST-Segment Abnormalities
ST- and T-wave amplitudes are referenced against the TP or
PR segments of the ECG. When low-frequency filtering is
done in ECG acquisition to remove baseline drift, the actual
DC voltage levels of various ECG waves or segments cannot
be determined. Thus, elevation of the ST segment may reflect
PR/TP depression, true ST elevation, or both; conversely, ST
depression may reflect PR/TP elevation, true ST depression,
or both.14–16 When considering deviations of the ST segment,
one should bear in mind total QRS amplitude because this
variable also affects the amplitude of ST-segment abnormal-
ities. Displacement of the ST segment is usually measured at
its junction with the end of the QRS complex, the “J point,”
and, in some settings such as exercise testing, 40 and up to 80
ms after the J point. The ST segment can be described as
elevated, depressed, upsloping, horizontal, or downsloping.
In addition, the magnitude of abnormal deviations and the
leads showing them should be identified. A depressed ST
segment may be further characterized as horizontal,
downsloping, or upsloping (rapidly or slowly).

Elevation of the ST segment in leads V1, V2, and V3 should
be referenced against the elevation that occurs normally in
these leads and is greater in young and middle-aged males
than in females17–21 and greater in blacks than in whites.21 ST
elevation is usually most pronounced in chest lead V2. The
upper normal limit for J-point elevation in V2 varies to a
certain degree in various reference sources, probably largely
as a result of differing selection criteria for the normal group.
One reference source20 reports the upper 98th percentile
normal limit as approximately 0.3 mV in white men less than
40 years of age (up to 0.33 mV in the 24- to 29-year age
group) and approximately 0.25 mV in white men 40 years old
and older. The corresponding limits for white women re-
mained relatively unchanged with age, staying at approxi-
mately 0.15 mV.

Another reference source21 lists normal limits for J-point
and ST60 (ST at 60 ms past the J point) amplitudes for white
and black men and women 40 years old and older in 2 age
groups. The upper normal limit (98th percentile) for J-point
amplitude in V2 was approximately 0.15 mV in white men
and 0.20 mV in black men. The corresponding limits were
approximately 0.10 mV for white women and 0.15 mV for
black women. The upper normal limits for ST60 in V2 were
approximately 0.3 mV in white men and approximately 0.35
mV in black men. The corresponding limits were approxi-
mately 0.2 mV in white women and approximately 0.25 mV
in black women.

Evaluation of ST elevation is of particular concern in
connection with myocardial ischemia in acute myocardial
infarction, as discussed in detail in part 6 of this series of
recommendations (Acute Ischemia/Infarction). The threshold
value for abnormal J-point elevation in V2 and V3 recom-
mended in that part is 0.2 mV for men 40 years of age and

older and 0.25 mV for men less than 40 years of age. The
recommended threshold value for adult women in V2 and V3 is
0.15 mV. The threshold recommended for abnormal J-point
elevation for men and women in all other standard leads is 0.1
mV. These threshold values appear to be an appropriate com-
promise for practical clinical use in the evaluation of ST
elevation.

In the evaluation of ST elevation, it is important to consider
ST-segment waveform in addition to the normal limits for ST
amplitudes. The ST segment in normal J-point elevation in V2

and particularly V1 is generally sloping down steeply. Normal
ST elevation at 60 ms past the J point is combined with an
upsloping ST segment rather than with the more horizontal
ST segment present in myocardial ischemia.

The reference values established in adequately large
population-based normal groups stratified by age, gender, and
race should be incorporated into computer-ECG ST-segment
classification algorithms to avoid the inappropriate diagnosis
of injury currents associated with myocardial ischemia, myo-
cardial infarction, or pericarditis.

ST-segment elevation can most often be attributed to 3
specific causes: (1) a normal variant, frequently referred to as
early repolarization, commonly characterized by J-point
elevation and rapidly upsloping or normal ST segment; (2)
injury currents associated with acute ischemia or ventricular
dyskinesis; and (3) injury currents usually associated with
pericarditis. Criteria exist to differentiate these causes22–24

and should be incorporated into the descriptive and diagnostic
algorithms of the various computer-ECG algorithms. However,
it is important to recognize that in practice it is often difficult to
differentiate between them. In addition, a variety of other
conditions may be associated with ST-segment elevation.

ST depression may be caused by various physiological,
pathological, and pharmacological interventions that change
the plateau phase of the ventricular action potential. Exam-
ples include the effects of ischemia, hypokalemia, and a
variety of cardiac and noncardiac drugs. These are primary
ST-segment changes. Depression of the ST-segment also may
occur concurrently with T-wave changes. Examples include
the ST-segment depression associated with hypertrophy and,
as secondary repolarization abnormalities, in ventricular con-
duction disturbances.

The ST-segment changes on the standard ECG that are
associated with acute ischemia or infarction are due to the
flow of current across the boundary between the ischemic and
nonischemic zones referred to as injury current. ST-segment
elevation generally occurs with reciprocal ST depression in
ECG leads in which the axis is opposite in direction from
those with ST elevation. These ST-segment abnormalities are
discussed in part VI (Acute Ischemia/Infarction),66 which
gives �0.05 as the recommended threshold value for abnor-
mal J- point depression in leads V2 and V3 in men and women
and �0.1 mV in all other leads.

Consideration of ST-segment changes as a response to
exercise stress testing is outside the scope of the present
working group.

Recommendation
Although it may be difficult to differentiate various causes of
ST-segment abnormalities, the ECG interpretative report
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should include a qualitative description of the ST segment
with due consideration of the age and gender of the patient,
including a note if ST depression is 0.1 mV or more
pronounced. One or more of the possible causes, depending
on the presence of other ECG abnormalities and the knowl-
edge of any pertinent clinical information, also may be
included. For evaluation of ST elevation, reference values
established in adequately large population-based normal
groups stratified by age, gender, and race should be
incorporated into computer-ECG ST-segment classifica-
tion algorithms to avoid the inappropriate diagnosis of
injury currents associated with myocardial ischemia/infarc-
tion or pericarditis.

T-Wave Abnormalities
Just as ST-segment segment abnormalities can occur with or
without T-wave abnormalities, T-wave abnormalities can
occur in the presence or absence of ST-segment segment
abnormalities. The T-wave amplitude in limb leads is influ-
enced by the frontal-plane T axis, which in turn is influenced
by the QRS axis.

In children older than 1 month, the T wave is often inverted
in leads V1, V2, and V3. In adolescents 12 years old and older
and in young adults less than 20 years of age, the T wave may
be slightly inverted in aVF and inverted in lead V2. In adults
20 years old and older, the normal T wave is inverted in aVR;
upright or inverted in leads aVL, III, and V1; and upright in
leads I and II and in chest leads V3 through V6.

In evaluations of T-wave abnormalities, T-wave negativity
in lateral chest leads V5 and V6 is clinically particularly
important. In these leads, the T wave is slightly negative (less
than 0.1 mV) in 2% of white men and women 60 years of age
and older and in 2% of black men and women 40 years of age
and older; it is negative by 0.1 mV or more in 5% of black
men and women 60 years of age and older.21

In normal adults, the T-wave amplitude is most positive in
lead V2 or V3. The reported normal standards for the T wave
in various reports from community-based populations vary to
some extent by age, gender, and race.20,21 T-wave amplitudes
for V2 from 1.0 to 1.4 mV have been listed as upper normal
thresholds in men (up to 1.6 mV in the 18- to 29-year age
group) and from 0.7 up to 1.0 mV in women.

A number of terms such as peaked, symmetrical, biphasic,
flat, and inverted are being used as appropriate qualitative T-
wave descriptors. As more quantitative descriptors, it is
proposed that the T wave in leads I, II, aVL, and V2 to V6 be
reported as inverted when the T-wave amplitude is from �0.1
to �0.5 mV, as deep negative when the amplitude is from
�0.5 to �1.0 mV, and as giant negative when the amplitude
is less than �1.0 mV.25 In addition, the T wave may be called
low when its amplitude is less than 10% of the R-wave
amplitude in the same lead and as flat when the peak T-wave
amplitude is between 0.1 and �0.1 mV in leads I, II, aVL
(with an R wave taller than 0.3 mV), and V4 to V6.

Interpreting isolated T-wave abnormalities is difficult and
often the source of ambiguous and inaccurate statements. The
inappropriate diagnoses of myocardial ischemia and infarc-
tion are common errors. As indicated above, ST- and T-wave
abnormalities that are secondary to abnormalities in ventric-

ular conduction should be labeled as such. ST- and T-wave
changes associated with hypertrophy, hypokalemia, and
drugs can be attributed to one of these factors. Giant T-wave
inversion is usually limited to one of several entities, includ-
ing hypertrophic cardiomyopathies, non–ST-segment eleva-
tion myocardial infarctions, and neurological events, partic-
ularly intracranial hemorrhage. The interpretation of such T-
wave changes should be descriptive, and a statement listing
the most common causes is appropriate.

It is virtually impossible to develop a cause-specific
classification for minor T-wave abnormalities. For these,
classification as slight or indeterminate T-wave abnormality
is appropriate. The overreader can then apply analysis of
other features, and the clinical condition if available, to
provide a more likely list of diagnostic possibilities. In these
situations, comparison with prior ECGs (if available) is often
helpful.

Notching of the T wave may be difficult to discriminate
from a U wave that is superimposed on the downslope of an
upright T wave. It is important to recognize that the T wave
is rarely notched in all 12 leads and that the interval between
the 2 summits of a notched T wave is usually less than the
interval between the peak of a monophasic T wave and the U
wave, which usually exceeds 150 ms at heart rates of 50 to
100 bpm.26

Recommendation
The ECG report should include a description of T-wave
abnormalities, identification of associated ST-segment
changes if present, and a statement as to whether the changes
are indeterminate or more likely to be associated with a
specific cause.

T-Wave Alternans
T-wave alternans signifies T-wave amplitude variations that
alternate every second beat. These amplitude variations are
quantified with various modifications of moving-average
analysis or as the variance of specific frequency components
in spectral analysis. T-wave alternans is typically observed as
microvolt-level variation (microvolt T-wave alternans) and,
at times, as more pronounced variations in alternating com-
plexes or as slower components outside the range of the
proper T-wave alternans, generally most prominent in phase
with respiration.

T-wave alternans indicates latent instability of repolariza-
tion predictive of malignant arrhythmias. It is generally not
present at the resting state even in high-risk patients, and a
stress test (exercise or pharmacological stress or pacing),
requiring special equipment and analysis software, is needed
to provoke it. These procedures are outside the scope of the
present document. It is sufficient to state that although the
role of T-wave alternans regarding its clinical utility has not
been fully defined, it holds substantial potential in identifying
patients at high risk of serious arrhythmic events.

The U Wave
The U wave is a mechanoelectric phenomenon26 that results
in a low-amplitude, low-frequency deflection that occurs after
the T wave. It is frequently absent in the limb leads and is
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most evident in leads V2 and V3, where its amplitude has been
suggested to be approximately 0.33 mV or 11% of the T
wave.27 Its presence is heart-rate dependent; it is rarely
present at rates greater than 95 bpm. Bradycardia enhances
the U-wave amplitude and is present in 90% of cases at heart
rates less than 65 complexes per minute.28

It has long been held that an increase in U-wave amplitude,
usually in association with depression of the ST segment and
a decrease in T-wave amplitude, may be caused by a variety
of cardioactive drugs with quinidine-like effects and by
hypokalemia and that with more advanced hypokalemia, that
is, K less than 2.7 mmol/L, the U-wave amplitude may
exceed the T-wave amplitude in the same lead. However,
more recent information suggests that this may be due to
fusion of the U wave with the T wave rather than to an
increase in U-wave amplitude per se.

Fusion of the U wave with the T wave also occurs in
association with an increase in sympathetic tone29 and in the
presence of a markedly prolonged QT interval such as that
which occurs in congenital and acquired long-QT syndromes
(LQTS).

An inverted U wave in leads V2 through V5 is abnormal.30

It may appear transiently during acute ischemia or in the
presence of hypertension.31,32 An abnormal U wave is often
quite subtle and is rarely an isolated ECG abnormality. Thus,
its presence is often not recognized or is overlooked by ECG
readers and automated systems. For these reasons, no specific
descriptive or diagnostic statements are recommended for
inclusion in the automated list of terms. It remains the
responsibility of the overreader to recognize abnormal U
waves and to determine their clinical relevance.

Recommendation
Statements concerning the U wave should be included in the
ECG interpretation when the U wave is inverted, when it is
merged with the T wave, or when its amplitude is greater than
that of the T wave.

The QT Interval
Measurement of the QT interval and its adjustment for rate,
gender, and QRS prolongation represent 2 of the major
challenges in electrocardiography. They are matters of great
importance to physicians, drug manufacturers, and regulatory
agencies because of the relationship between prolongation of
the QT interval and potentially lethal ventricular arrhythmias.
The document released in October 2005 by the Food and
Drug Administration (FDA) provides guidance for the design,
conduct, analysis, and interpretation of clinical studies for
evaluation of QT-interval prolongation.33

QT and ST-T patterns vary a great deal in various geno-
types of the LQTS. Zhang et al34 described 10 different ST-T
patterns in first 3 genotypes of the syndrome (4 in LQT1, 4 in
LQT2, and 2 in LQT3), and these patterns were present in the
majority of genotyped LQTS patients.

The QT interval is defined as the interval from the onset of
the QRS complex, that is, the earliest indication of ventricular
depolarization, to the end of the T wave, that is, the latest
indication of ventricular repolarization. The problems asso-
ciated with this measurement include the following: (1)

recognizing the onset of the QRS complex and the end of the
T wave, (2) determining the appropriate lead(s) in which to
measure the QT interval, and (3) adjusting the QT interval for
increases in QRS duration, gender, and rate.

When the majority of ECGs were recorded on single-
channel analog machines, various leads were recorded se-
quentially, and the QT interval was measured manually in the
individual leads. Determination of the end of the T wave was
often difficult and sometimes impossible, and the onset of the
QRS complex and the end of the T wave varied in different
leads, appearing shorter when the axis of an individual lead
was more perpendicular to the spatial vector of the onset of
the QRS complex or the end of the T wave. The onset of the
QRS complex tends to occur up to 20 ms earlier in V2 and V3

than in the limb leads.35 Some regard differences of up to 50
ms in QT intervals measured in the various leads in normal
subjects as being normal36; others have suggested that differ-
ences of up to 65 ms were still within the limit of normal.37

This value is reported to be less in women than in men.38

When the QT interval is measured in individual leads, the
lead showing the longest QT should be used.39 This is usually
V2 or V3. However, if this measurement differs by more than
40 ms from that in other leads, the measurement may be in
error, and measurements from adjacent leads should be
considered. If the T wave and U wave are superimposed or
cannot be separated, it is recommended that the QT be
measured in the leads not showing U waves, often aVR and
aVL,39 or that the downslope of the T wave be extended by
drawing a tangent to the steepest proportion of the downslope
until it crosses the TP segment. It should be recognized that
defining the end of the T wave in these ways might under-
estimate the QT interval.

As detailed in the section on ECG technology,1 most
currently used automated digital machines record all leads
simultaneously. This technique permits their temporal align-
ment and superimposition, which facilitates a more accurate
assessment of the beginning of the QRS complex, the end of
the T wave, and the separation of the U wave from the T
wave. As a result, the automatically measured QT interval is
often longer than the QT interval as measured in any
individual lead, and the values currently regarded as normal,
which were established with single-channel sequential re-
cordings, may no longer be valid. Most automated systems do
not routinely display the superimposed tracings or the points
used to derive the QT interval.

In view of the clinical importance of the QT-interval
prolongation, it is essential to visually validate QT-interval
prolongation reported by a computer algorithm.

In addition to administration of QT-prolonging cardioac-
tive drugs, a number of conditions can induce QT prolonga-
tion. It is often possible to identify a specific cause of QT
prolongation when appropriate clinical information is avail-
able; for instance, both hypokalemia and hypocalcemia can
prolong phase 2 and phase 3 of the action potential and
prolong the QT interval. It is not feasible here to compile a
comprehensive list of all possible causes of QT prolongation.
It is sufficient to emphasize that its presence in an ECG report
should call for a careful clinical evaluation of possible causes.
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Recommendation
It is recommended that selective subsets of temporally
aligned superimposed ECG leads be made available as an
optional display to facilitate QT measurement and to validate
the onset and end points of the QT interval. In view of the
clinical importance of QT-interval prolongation, it is essential
to visually validate QT-interval prolongation reported by a
computer algorithm.

QT Correction for Rate
Many formulas have been proposed to adjust the QT interval
for rate.40,41 The most widely used is the formula derived by
Bazett42 in 1920 from a graphic plot of measured QT intervals
in 39 young subjects. This adjustment procedure divides the
measured QT by the square root of the RR interval to derive
the rate-adjusted value. The formula introduced by Frideri-
cia,43 also in 1920, uses the cube root of RR. Bazett’s formula
leaves a strong positive residual correlation (r�0.32) and
Fridericia’s formula leaves a negative correlation (r��0.26
to �0.32) with heart rate,44,45 and the adjusted QT values may
be substantially in error, particularly when the heart rate is
high. More recently introduced formulas for QT adjustment
as a linear or power function of RR or heart rate for
adults44,45–48 and for children49 effectively remove the rate
dependence of the adjusted QT, and they are clearly prefer-
able to both Bazett’s and Fridericia’s formulas. Some inves-
tigators have introduced separate normal limits or rate cor-
rection factors for each heart rate subinterval using the
so-called “bin method.”46,50

Recommendation
It is recommended that linear regression functions rather than
the Bazett’s formula be used for QT-rate correction and that
the method used for rate correction be identified in ECG
analysis reports. In addition, rate correction of the QT interval
should not be attempted when RR interval variability is large,
as often occurs with atrial fibrillation, or when identification
of the end of the T wave is unreliable.

QT Correction for Gender and the Limits for
Prolonged and Short QT Interval
Although Bazett’s and Fridericia’s formulas make no adjust-
ment for gender, many studies have demonstrated that the QT
interval is longer in young and middle-aged females than in
males. The gender difference is potentially important because
women are generally considered to be more prone to malig-
nant arrhythmias in LQTS than men. The gender difference
appears during adolescence,51 when the rate-adjusted QT
shortens in boys, possibly as a testosterone effect, but
undergoes little change in girls.

The reported gender difference in various studies varies
from 6 to 10 ms in older age groups and from 12 to 15 ms in
younger adults. Overall, the gender difference in rate-
adjusted QT interval becomes small after 40 years of age and
practically disappears in older men and women. Separate
gender- and age-specific QT-adjustment formulas have been
proposed to accommodate these differences.21,44,46,47 Normal
limits proposed in different studies vary to a certain extent,
depending on the characteristics of the study population and

particularly on the type of QT-adjustment function used. It is
important to recognize that normal limits established using
the upper and lower limits of actual percentile distributions of
the rate-adjusted QT are preferable to those as mean values
�2�SD because these distributions are strongly skewed.44

Normal standards for thresholds for abnormal QT from
large subgroups of community-based populations are avail-
able.21,44–48 These limits are relatively uniform in reports that
have appropriately used linear regression functions with QT-
rate adjustment as a linear or power function of RR or heart
rate.21,44,46–48 The following normal limits are suggested as a
practical compromise for the evaluation of QT-interval pro-
longation and shortening in adult men and women: prolonged
QT: women, 460 ms or longer; men, longer than 450 ms; and
short QT: women and men, 390 ms or shorter.

FDA guidelines for industry recommend that 3 severity
levels for rate-corrected QT be reported when considering
possible QT-prolonging effects of drugs: longer than 350 ms,
longer than 480 ms, and longer than 500 ms.32

Although the upper normal limits for QT adjusted for rate
as a linear function of RR in small groups of children
stratified by age, gender, and heart rate have been pub-
lished,52 the limits for prolonged and short QT established in
reasonably large groups of children have been reported only
for Bazett’s formula.53 In that report, the 98th percentile limit
for rate-adjusted QT was approximately 450 ms in children
younger than 12 years of age. The gender difference of 8 ms
appeared in the 12- to 16-year age group. It should be noted
that QT adjusted by Bazett’s formula may produce false QT
prolongations.45

Recommendation
It is recommended that, in addition to rate, an adjustment for
gender and age be incorporated into QT adjustment. As
practical clinical limits for considering the QT interval as
abnormal, it is recommended that the adjusted QT of 460 ms
or longer in women and 450 ms or longer in men be
considered a prolonged QT interval and that QT 390 ms and
shorter be considered a short QT interval.

Correction for QRS Duration
The QT interval prolongs in ventricular conduction defects,
and an adjustment for QRS duration becomes necessary.54–56

This can be accomplished best by incorporating QRS dura-
tion and RR interval as covariates into the QT-adjustment
formula or by using the JT interval (QT duration–QRS
duration).55 If the JT interval is chosen, normal standards
established specifically for the JT interval should be used.55

Recommendation
QT- and JT-adjustment formulas have recently been intro-
duced for use in the setting of prolonged ventricular conduc-
tion. With confirmation, they may be incorporated into
automated algorithms to provide appropriate correction
factors.

Evaluation of QT Intervals in
Sequential Tracings

Evaluation of QT intervals from sequential ECG recordings is
essential for identification of QT prolongation induced by
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pharmacological agents in drug studies. It is also helpful as an
adjunct to ST analysis in determining the presence of active
ischemia in patients suspected of having myocardial
infarction.

When sequential tracings from patients recorded at differ-
ent times of day and at different locations are compared, it is
important to recognize that the time of day can influence the
QT interval,57,58 that differences may exist between the
different recording systems and between the programs used
for QT measurement, and that different formulas for QT-rate
adjustment may have been used. Moreover, there is a signif-
icant interreader variability in the measurement of QT inter-
val.59 Rigorous standardization of the recording and evalua-
tion procedures should be followed when serial comparison
of QT intervals is undertaken.

The FDA guide for industry suggests that in the evaluation
of possible QT prolongation induced by drugs, 2 levels of
change in serial ECGs in the rate-corrected QT from the
baseline be reported: an increase of greater than 30 ms and an
increase of greater than 60 ms.33

Recommendation
It is recommended that for serial comparisons ECG recorders
meet specific performance standards and, if possible, be of
the same type; that uniform, carefully standardized ECG
acquisition and QT-measurement procedures be used; and
that, whenever possible, a single reader be responsible for
overreading sequential tracings of an individual patient or
research subject.

QT Dispersion
Increased heterogeneity of myocardial repolarization may pre-
dispose patients to the development of malignant ventricular
arrhythmias.60 As indicated above, significant differences exist
in the duration of the QT interval when measured in the
individual leads. Visualization of these differences is facilitated
by the display of a suitable subset of temporally aligned
simultaneous leads with a slight separation on the amplitude
scale.

The difference between the longest and shortest QT inter-
vals is referred to as QT dispersion. This concept was
introduced in 1990 for risk identification in patients with
LQTS.61 Since its introduction, QT dispersion has been one
of the most popular topics in ECG research. In November
2006, a PubMed search cited 670 publications with QT
dispersion in the title, and a Google search under “QT
dispersion measurement” revealed 171 000 communications.

The QT-dispersion concept has led to the expectation that
QT dispersion is a measure of regional or localized hetero-
geneity of myocardial repolarization. Numerous studies have
suggested an increased risk of morbidity and mortality for an
increase in QT dispersion. However, substantial methodolog-
ical problems with the QT-dispersion measurement have been
identified that have raised fundamental questions about the
validity of the concept.62–65 In principle, the expectation that
QT dispersion is a measure of the regional or localized
heterogeneity of myocardial repolarization implies that the
leads with the shortest and longest QT contain signal infor-
mation at the terminal part of the T wave that is not present
in the first 3 orthogonal components of the 12-lead ECG (or
the composite global T wave).65

Until adequately validated data in specific clinical condi-
tions are presented showing that QT dispersion on the body
surface ECG is the counterpart of localized dispersion of
myocardial repolarization and conveys adequately strong
nondipolar signal information that cannot be extracted from
the X,Y,Z components, it seems unwise to include it as a part
of the routine ECG report.

Recommendation
It is recommended that QT dispersion not be included in
routine ECG reports. However, because of the fundamental
importance of the heterogeneity of myocardial repolarization
in the genesis of malignant ventricular arrhythmias, continued
research into the identification of markers of increased
dispersion of myocardial repolarization on the body surface
ECG is encouraged.
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